ALGEBRAIC KAN EXTENSIONS IN DOUBLE CATEGORIES


Koudenburg S. R.

THEORY AND APPLICATIONS OF CATEGORIES, cilt.30, ss.86-146, 2015 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 30
  • Basım Tarihi: 2015
  • Dergi Adı: THEORY AND APPLICATIONS OF CATEGORIES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.86-146
  • Anahtar Kelimeler: double monad, algebraic Kan extension, free bicommutative Hopf monoid, BICATEGORIES
  • Orta Doğu Teknik Üniversitesi Kuzey Kıbrıs Kampüsü Adresli: Hayır

Özet

We study Kan extensions in three weakenings of the Eilenberg-Moore double category associated to a double monad, that was introduced by Grandis and Pare. To be precise, given a normal oplax double monad T on a double category K, we consider the double categories consisting of pseudo T-algebras, 'weak' vertical T-morphisms, horizontal T-morphisms and T-cells, where 'weak' means either 'lax', 'colax' or 'pseudo'. Denoting these double categories by Alg(w)(T), where w = 1, c or ps accordingly, our main result gives, in each of these cases, conditions ensuring that (pointwise) Kan extensions can be lifted along the forgetful double functor Alg(w)(T) -> K. As an application we recover and generalise a result by Getzler, on the lifting of pointwise left Kan extensions along symmetric monoidal enriched functors. As an application of Getzler's result we prove, in suitable symmetric monoidal categories, the existence of bicommutative Hopf monoids that are freely generated by cocommutative comonoids.